Showing posts with label Bahan Tambang. Show all posts
Showing posts with label Bahan Tambang. Show all posts

Tuesday, 20 March 2012

Bauksit

 
Bauksit (bahasa Inggris: bauxite) adalah biji utama aluminium yang terutama terdiri dari hydrous aluminium oksida dan aluminium hidroksida yaitu berupa mineral gibbsite Al (OH) 3, boehmite γ-ALO (OH), dan diaspore α-ALO (OH), bersama-sama dengan oksida besi goethite dan bijih besi, mineral tanah liat kaolinit dan sejumlah kecil anatase Tio 2 . Secara umum bauksit mengandung Al2O3 sebanyak 45 – 65%, SiO2 1 – 12%, Fe2O3 2 – 25%, TiO2 >3%, dan H2O 14 – 36%. Pertama kali ditemukan pada tahun 1821 oleh geolog bernama Pierre Berthier pemberian nama sama dengan nama desa Les Baux di selatan Perancis.

Bijih bauksit dapat ditemukan di daerah tropika dan subtropika yang memungkinkan terjadinya pelapukan yang sangat kuat. Bauksit terbentuk dari batuan sedimen yang mempunyai kadar Al nisbi tinggi, kadar Fe rendah dan kadar kuarsa (SiO2) bebasnya sedikit atau bahkan tidak mengandung sama sekali. 

Batuan tersebut (misalnya sienit dan nefelin) yang berasal dari batuan beku, batu lempung, lempung dan serpih. Batuan-batuan tersebut akan mengalami proses lateritisasi, yang kemudian oleh proses dehidrasi akan mengeras menjadi bauksit.

Bauksit dapat ditemukan dalam lapisan datar, tetapi kedudukannya di kedalaman tertentu. Potensi dan cadangan endapan bauksit banyak terdapat di Pulau Bintan (terbesar di Indonesia), Kepulauan Riau, Pulau Bangka, dan Pulau Kalimantan.

Cara Pengolahan

Penambangan bauksit dilakukan dengan penambangan terbuka diawali dengan land clearing. Setelah pohon dan semak dipindahkan dengan bulldozer, dengan alat yang sama diadakan pengupasan tanah penutup. Lapisan bijih bauksit kemudian digali dengan shovel loader yang sekaligus memuat bijih bauksit tersebut kedalam dump truck untuk diangkut ke instalansi pencucian.

Bijih bauksit dari tambang dilakukan pencucian dimaksudkan untuk meningkatkan kualitasnya dengan cara mencuci dan memisahkan bijih bauksit tersebut dari unsur lain yang tidak diinginkan, misal kuarsa, lempung dan pengotor lainnya. Partikel yang halus ini dapat dibebaskan dari yang besar melalui pancaran air (water jet) yang kemudian dibebaskan melalui penyaringan (screening). Disamping itu sekaligus melakukan proses pemecahan (size reduction) dengan menggunakan jaw crusher.

Cara-cara Leaching:

a. Cara Asam (H2SO4)

Hanya dilakukan untuk pembuatan Al2(SO4)3 untuk proses pengolahan air minum dan pabrik kertas.
  • Reaksi dapat dipercepat dengan menaikkan temperatur sampai 180 C (Autoclaving)
  • KalsinasiCocok untuk lowgrade Al2O3 tetapi high SiO2 yang tidak cocok dikerjakan dengan cara basa.
  • Hasil Basic-Al-Sulfat dikalsinansi menjadi Al2O3, kelemahan cara ini adalah Fe2O3 ikut larut.
b. Cara Basa (NaOH), Proses Bayers (Th 1888) 

Ada 2 macam produk alumina yang bisa dihasilkan yaitu Smelter Grade Alumina (SGA) dan Chemical Grade Alumina (CGA). 90% pengolahan bijih bauksit di dunia ini dilakukan untuk menghasilkan Smelter Grade Alumina yang bisa dilanjutkan untuk menghasilkan Al murni. Berikut block diagram pengolahan bauksit melalui proses SGA:


c. Cara Sintering dengan Na2CO3 (Deville-Pechiney)

Sintering dilakukan dalam Rotary Kiln 1000 C selama 2-4 jam, cocok untuk bijih dengan high Fe2O3 dan SiO2.

Reaksi-reaksi:

Al2O3 + Na2CO3 = NaAlO2 + CO2(g)
Fe2O3 + Na2CO3 = Na2O∙Fe2O3 + CO2(g)
TiO2 + Na2CO3 = Na2O∙TiO2 + CO2(g)
SiO2 + Na2CO3 = Na2O∙SiO2 + CO2(g)

d. Dengan proses elektolisa

Bahan utamanya adalah bauksit yang mengandung aluminium oksida. pada katoda terjadi reaksi reduksi, ion aluminium (yang terikat dalam aluminium oksida) menerima electron menjadi atom aluminium,

4 Al(3+) + 12 e(1-) ————–> 4 Al

pada anoda terjadi reaksi oksidasi, dimana ion-ion oksida melepaskan elektron menghasilkan gas oksigen.

6 O(2-) ——————> 3 O2 + 12 e(1-)

logam aluminium terdeposit di keping katoda dan keluar melalui saluran yang telah disediakan.

Proses Pemurnian Bauksit

Pemurnian bijih bauksit dari aluminium oksida dilakukan secara kontinyu. Cryolite ditambahkan dalam titik leleh yang lebih rendah dan melarutkan bijih.
  • Ion-ion harus bebas bergerak menuju elektroda yang disebut katoda (elektroda negatif) yang menarik ion positif, misalnya Al3+ dan anoda (elektroda positif) yang menarik ion negatif, misalnya O2-
  • Ketika arus DC dilewatkan melalui plat aluminium pada katoda (logam) maka aluminium akan diendapkan di bagian bawah tangki.
  • Pada anoda, gas oksigen terbentuk (non-logam). Ini menimbulkan masalah. Pada suhu yang tinggi dalam sel elektrolit, gas oksigen akan membakar dan mengoksidasi elektroda karbon menjadi gas beracun karbon monoksida atau karbon dioksida. Sehingga elektrode harus diganti secara teratur dan gas buang dihilangkan.
  • Hal tersebut merupakan proses yang memerlukan biaya relatif banyak (6x lebih banyak dari pada Fe) karena dalam proses ini membutuhkan energi listrik yang mahal dalam jumlah yang banyak.
  • Dua aturan yang umum :
    • Logam dan hidrogen (dari ion positif), terbentuk pada elektroda negatif (katoda).
    • Non-logam (dari ion negatif), terbentuk pada elektroda positif (anoda).
bijih_bauksit
  • Bijih bauksit dari aluminium oksida tidak murni (Al2O3 terbentuk dari ion Al3+ dan ion O2-).
  • Karbon (grafit) digunakan sebagai elektroda.
  • Cryolite menurunkan titik leleh bijih dan menyimpan energi, karena ion-ion harus bergerak bebas untuk membawa arus.
  • Elektrolisis adalah penggunaan energi listrik DC yang megakibatkan adanya perubahan kimia, misalnya dekomposisi senyawa untuk membentuk endapan logam atau membebaskan gas. Adanya energi listrik menyebabkan suatu senyawa akan terbelah.
  • Sebuah elektrolit menghubungkan antara anoda dan katoda. Sebuah elektrolit adalah lelehan atau larutan penghubung dari ion-ion yang bergerak bebas yang membawa muatan dari sumber arus listrik.
Proses reaksi redoks yang terjadi pada elektroda :
  • Pada elektroda negatif (katoda), terjadi proses reduksi (penagkapan elektron) dimana ion aluminiun yang bermuatan positif menarik elektron. Ion aluminuim tersebut menangkap tiga elektron untuk mengubah ion aluminuim menjadi atom.
  • aluminium dalam keadaan netral. Al3+ 3e- → Al
  • Pada elektroda positif (anoda), terjadi proses oksidasi (pelepasan elektron) dimana ion oksida negatif melepaskannya. Ion oksida tersebut melepaskan dua elektron dan membentuk molekul oksigen yang netral.
2O2- → O2 + 4e-
Atau
2O2- – 4e- → O2
  • Catatan : reaksi oksidasi maupun reduksi terjadi secara bersama-sama.
    • Reaksi dekomposisi secara keseluruhan adalah :
Aluminium oksida  →  aluminium + oksigen
2 Al2O3 → 4Al + 3O2

Dan reaksi diatas merupakan reaksi yang sangat endotermis, banyak energi listrik yang masuk.

Sunday, 11 March 2012

Aluminium

Aluminium (atau aluminum,alumunium,almunium,alminium) ialah unsur kimia. Lambang aluminium ialah Al, dan nomor atomnya 13. Aluminium ialah logam paling berlimpah. Aluminium bukan tergolong pada jenis logam berat. Aluminium termasuk logam golongan utama (IIIA) yang bersifat amfoter dan ringan bersama magnesium dan platina

Aluminium merupakan logam yang paling banyak ditemukan di kerak bumi (8.1%) dan paling banyak ketiga, tetapi tidak pernah ditemukan secara bebas di alam. Selain pada mineral yang telah disebut di atas, ia juga ditemukan di granit dan mineral-mineral lainnya.

Sejarah

(Latin: alumen, alum) Orang-orang Yunani dan Romawi kuno menggunakan alum sebagai cairan penutup pori-pori dan bahan penajam proses pewarnaan. Pada tahun 1761 de Morveau mengajukan nama alumine untuk basa alum dan Lavoisier, pada tahun 1787, menebak bahwa ini adalah oksida logam yang belum ditemukan.

Wohler yang biasanya disebut sebagai ilmuwan yang berhasil mengisolasi logam ini pada 1827, walau aluminium tidak murni telah berhasil dipersiapkan oleh Oersted dua tahun sebelumnya. Pada 1807, Davy memberikan proposal untuk menamakan logam ini aluminum (walau belum ditemukan saat itu), walau pada akhirnya setuju untuk menggantinya dengan aluminium. Nama yang terakhir ini sama dengan nama banyak unsur lainnya yang berakhir dengan “ium”.

Aluminium juga merupakan pengejaan yang dipakai di Amerika sampai tahun 1925 ketika American Chemical Society memutuskan untuk menggantikannya dengan aluminum. Untuk selanjutnya pengejaan yang terakhir yang digunakan di publikasi-publikasi mereka.

Harga aluminium awalnya sangat mahal bahkan hampir sama dengan harga emas. Karena sifatnya yang ringan dan sangat kuat Napoleon III pernah memerintahkan membuat baju prajuritnya dari aluminium menggantikan baju besi. Dan karena harga aluminium yang sangat mahal ini dalam jamuan makan Napoleon III menggunakan sendok garpu dari aluminium sedangkan tamunya disediakan sendok garpu emas dan perak.

Sumber

Metoda untuk mengambil logam aluminium adalah dengan cara mengelektrolisis alumina yang terlarut dalam cryolite. Metoda ini ditemukan oleh Hall di AS pada tahun 1886 dan pada saat yang bersamaan oleh Heroult di Perancis. Cryolite, bijih alami yang ditemukan di Greenland sekarang ini tidak lagi digunakan untuk memproduksi aluminium secara komersil. Penggantinya adalah cariran buatan yang merupakan campuran natrium, aluminium dan kalsium fluorida.

Sifat-sifat

Aluminium murni, logam putih keperak-perakan memiliki karakteristik yang diinginkan pada logam. Ia ringan, tidak magnetik dan tidak mudah terpercik, merupakan logam kedua termudah dalam soal pembentukan, dan keenam dalam soal ductility.

Sifat-sifat penting yang dimiliki aluminium sehingga banyak digunakan sebagai material teknik:
- Berat jenisnya ringan (hanya 2,7 gr/cm³, sedangkan besi ± 8,1 gr/ cm³)
- Tahan korosi
- Penghantar listrik dan panas yang baik
- Mudah di fabrikasi/di bentuk
- Kekuatannya rendah tetapi pemaduan (alloying) kekuatannya bisa ditingkatkan

Sifat bahan korosi dari aluminium diperoleh karena terbentuknya lapisan aluminium oksida (Al2O3) pada permukaan aluminium. Lapisan ini membuat Al tahan korosi tetapi sekaligus sukar dilas, karena perbedaan melting point (titik lebur).
 
Aluminium umumnya melebur pada temperature ± 600 derajat C dan aluminium oksida melebur pada temperature 2000oC.

Kekuatan dan kekerasan aluminium tidak begitu tinggi dengan pemaduan dan heat treatment dapat ditingkatkan kekuatan dan kekerasannya. Aluminium komersil selalu mengandung ketidak murnian ± 0,8% biasanya berupa besi, silicon, tembaga dan magnesium.
 
 Sifat lain yang menguntungkan dari aluminium adalah sangat mudah difabrikasi, dapat dituang (dicor) dengan cara penuangan apapun. Dapat di-deforming dengan cara: rolling, drawing, forging, extrusi dll, menjadi bentuk yang rumit sekalipun.

Berikut adalah beberapa kelebihan aluminium dibanding logam-logam yang lain:

  1. Penghantar listrik dan panas yang baik walaupun tidak sebaik tembaga. Karena memiliki daya hantar listrik yang baik ini aluminiumdigunakan pada kabel listrik menggantikan tembaga yang harganya lebih
    mahal.
  2. Mempunyai warna yang stabil seolah-olah tidak berkarat. Hal ini disebabkan aluminium sangat cepat bereaksi dengan dengan oksigen yang terdapat di udara menghasilkan aluminium oksida. Oksida yang terbentuk tidak mudah terkelupas sehingga dapat melindungi permukaan aluminium yang ada dibagian bawah agar tidak terjadi oksidai berlanjut. Selain berupa lapisan tipis, oksida yang terbentuk merupakan lapisan tembus cahaya sehingga aluminium seolah-olah tidak berubah (tetap mengkilat).
  3. Permukaannya tidak perlu di cat karena sudah cukup bagus dan menarik.
  4. Serbuk aluminium yang sangat halus tampak mengkilat seperti logam aslinya sehingga sering dicampur pada minyak cat (vernis) menghasilkan cat metalik yang harganya relatif labih mahal dibanding cat biasa. Cat-cat metalik kebanyakan digunakan pada barang-barang mewah, karena dengan penambahan aluminium, cat dapat memantulkan cahaya yang lebih banyak.
  5. Tidak bereaksi dengan asam atau bahan kimia lain yang terdapat dalam bahan makanan. Oleh karena itu aluminium banyak digunakan sebagai bahan dasar pembuatan alat-alat rumah tangga misanya panci. Dan aluminium dijadikan kertas aluminium yang sangat tipis yang digunakan sebagai pembungkus rokok, gula, bumbu masak dan beberapa keperluan lain.
  6. Paduan 95% aluminium dengan 5% unsur lain seperti Cu, Mg, dan Mn dapat digunakan menggantikan fungsi besi walaupun tidak sekuat besi. Misalnya dalam pembuatan bingkai pintu dan jendela.

Kegunaan

Aluminium banyak digunakan sebagai peralatan dapur, bahan konstruksi bangunan dan ribuan aplikasi lainnya dimanan logam yang mudah dibuat, kuat dan ringan diperlukan.

Aluminium terdapat dalam penggunaan aditif makanan, antasida, buffered aspirin, astringents, semprotan hidung, antiperspirant, air minum, knalpot mobil, asap tembakau, penggunaan aluminium foil, peralatan masak, kaleng, keramik , dan kembang api.

Walau konduktivitas listriknya hanya 60% dari tembaga, tetapi Aluminium merupakan konduktor listrik yang baik. Ia digunakan sebagai bahan transmisi karena ringan. Terang dan kuat. Merupakan konduktor yang baik juga buat panas. Dapat ditempa menjadi lembaran, ditarik menjadi kawat dan diekstrusi menjadi batangan dengan bermacam-macam penampang. Tahan korosi.

Aluminium digunakan dalam banyak hal. Kebanyakan darinya digunakan dalam kabel bertegangan tinggi. Juga secara luas digunakan dalam bingkai jendela dan badan pesawat terbang. Ditemukan di rumah sebagai panci, botol minuman ringan, tutup botol susu dsb. Aluminium juga digunakan untuk melapisi lampu mobil dan compact disks.

Aluminium murni sangat lunak dan tidak kuat. Tetapi dapat dicampur dengan tembaga, magnesium, silikon, mangan, dan unsur-unsur lainnya untuk membentuk sifat-sifat yang menguntungkan.

Campuran logam ini penting kegunaannya dalam konstruksi pesawat modern dan roket. Logam ini jika diuapkan di vakum membentuk lapisan yang memiliki reflektivitas tinggi untuk cahaya yang tampak dan radiasi panas. Lapisan ini menjaga logam dibawahnya dari proses oksidasi sehingga tidak menurunkan nilai logam yang dilapisi. Lapisan ini digunakan untuk memproteksi kaca teleskop dan kegunaan lainnya.

Paduan Aluminium

Dalam keadaan murni aluminium terlalu lunak, kekuatannya rendah untuk dapat dipakai pada berbagai keperluan teknik.
 
Dengan pemaduan teknik (alloying), sifat ini dapat diperbaiki, tetapi seringkali sifat tahan korosinya berkurang demikian pula keuletannya.
 
Sedikit mangan, silicon dan magnesium, masih tidak banyak mengurangi sifat tahan korosinya, tetapi seng, besi, timah putih, dan tembaga cukup drastis menurunkan sifat tahan korosinya.

Paduan aluminium dapat dibagi menjadi 2 kelompok:
1. Aluminium wronglt alloy (lembaran)
2. Aluminium costing alloy (batang cor)

Senyawa

Senyawa yang memiliki kegunaan besar adalah aluminium oksida, sulfat, dan larutan sulfat dalam kalium. Oksida aluminium, alumina muncul secara alami sebagai ruby, safir, corundumemery dan digunakan dalam pembuatan kaca dan tungku pemanas. 

Pengolahan Bijih Aluminium

Orang pertama yang berhasil memisahkan aluminium dari senyawanya adalah Orsted pada tahun 1825 dengan cara mereduksi aluminium klorida, namun belum dalam keadaan murni. Aluminium murni ditemukan oleh Wohler dalam bentuk serbuk berwarna abu-abu pada tahun 1827 dengan memodifikasi proses Orsted.

Kini proses yang digunakan untuk memperoleh aluminum secara besar-besaran digunakan proses Hall-Heroult. Cara ini ditemukan oleh dua orang yang umurnya sama (23 tahun) namun ditempat yang berbeda yakni Charles Martin Hall di Amerika dan Heroult di Paris pada tahun 1886. Proses ini menjadikan kedua orang ini kaya dalam waktu singkat dan meninggal dunia pada tahun yang sama pula (1914). Setelah ditemukan cara ini harga aluminium yang awalnya sangat mahal turun secara drastis.

Pemurnian Aluminium dengan Proses Martin-Heroult

imageGambar Bauksit

Biji aluminum yang penting sebagai sumber aluminum adalah bauksit. Bauksit yang dihasilkan dari tambang dihancurkan kemudian dihaluskan menjadi serbuk menggunakan alat-alat tertentu, biasanya Ballmil. Setelah halus ditambahkan larutan NaOH pekat untuk melarutkan Al2O3 yang ada dalam bauksit sedangkan zat lain tidak larut.

Al2O3(s) + 2NaOH(aq) ―→ 2NaAlO2(aq) + H2O(l)

Setelah dilakukan pemisahan larutan NaAlO2 diasamkan sehingga terbentuk endapan Al(OH)3.

NaAlO2(aq) + H2O(l) + HCl(aq) ―→ Al(OH)3(s) + NaCl(aq)

Endapan Al(OH)3 disaring kemudian dipanaskan pada suhu sekitar 1150°C sehingga terurai menjadi Al2O3 dan uap air.

Al(OH)3(s) ―→ Al2O3(s) + 3H2O(g)

Al2O3 inilah yang akan direduksi menjadi aluminium secara elektrolisis dalam suatu bejana yang disebut sel Hall-Heroult. Sebelum proses elektrolisis dilangsungkan alumina dilelehkan terlebih dahulu dalam kriolit. Fungsi kriolit disini untuk menurunkan titik leleh alumina yang awalnya sekita 2000°C menjadi 900°C.

Lelehan alumina yang diperoleh kemudian dimasukan ke dalam suatu bejana untuk proses elektrolisis yang disebut sel Hall-Heroult. Bejana yang digunakan terbuat dari besi dilapisi grafit yang sekaligus bertindak sebagai katoda. Sedangkan anoda digunakan batang-batang grafit yang dicelupkan ke dalam larutan.

Ketika arus listrik dijalankan ion-ion Al3+ yang ada dalam larutan akan bergerak menuju katoda, yang kemudian direduksi menjadi aluminium cair sedangkan ion-ion O2ˉ akan bergerak menuju anoda kemudian dioksidasi menjadi gas oksigen. Berikut reaksi yang terjadi dalam sel elektrolisis

Al2O3(l) ―→ 2Al3+(aq) + 3O2(aq)
Katoda : Al3+(l) + 3e ―→Al(l) × 4
Anoda : 2O2(l) ―→ O2(g) + 4e × 3
4Al3+(aq) + 6O2(aq) ―→ 4Al(l) + 3O2(g)

image
Gambar Sel Hall-Heroult untuk pembuatan aluminium dari elektrolisis lelehan Al2O3 dalam kriolit

Aluminium cair yang diperoleh dialirkan keluar dari sel kemudian suhu diturunkan suhu agar diperoleh aluminium padat. Aluminium yang diperoleh dalam bentuk cair karena suhu di dalam sel elektrolisis melebihi titik leleh aluminium yang hanya 660°C. 

Oksigen yang dihasilkan pada anoda dapat bereaksi dengan grafit yang digunakan membentuk gas karbon dioksida dan karbon monooksida. Akibatnya anoda lama-kelamaan akan berkurang dan perlu diganti pada saat-saat tertentu.

Penggunaan aluminium makin lama makin penting sejalan perkembangan teknologi. Hal ini didukung oleh oleh sifatnya yang menarik dengan harga yang relatif murah. Selain itu aluminium termasuk logam yang ringan bersama-sama dengan magnesium dan titanium.

Walaupun memiliki berbagai kelebihan namun logam aluminium maupun paduannya memiliki kekurangan, salah satunya yitu tidak bisa di las atau disolder. Hal ini tentu sangat merugikan, sebab jika sebagian kecil dari aluminium yang mengalami kerusakan maka semua bagian harus diganti dengan yang baru.

Reaksi antara aluminium dengan Fe2O3 dikenal dengan reaksi termit yang dihasilkan panas untuk pengelasan baja.
2Al(s) + Fe2O3(s) ―→ Al2O3(s) + Fe(l) ∆H = -852 kJ

Beberapa senyawa aluminium yang banyak digunakan dalam kehidupan sehari-hari dan industri, antara lain:
  • Tawas, KAl(SO4)2.12H2O digunakan untuk mengendapkan kotoran pada penjernihan air. 
  • Aluminium sulfat Al2(SO4)3 digunakan dalam industri kertas dan mordan (pengikat dalam pencelupan). 
  • Zeolit Na2O Al2O3.2SiO2 digunakan untuk melunakkan air sadah. 
  • Aluminium Al2O3 untuk pembuatan aluminium, pasta gigi, industri keramik, dan industri gelas.

Saturday, 7 May 2011

Batu Ruby


Bila berbicara tentang batu mulia yang bernama Ruby, imajinasi kita serasa terbang ke negeri 1001 malam. Terbayang sesosok gagah didampangi permaisuri yang cantik, anggun, tinggi semampai, lengkap dengan mahkota dan jubah bertatahkan batu Ruby berwarna merah. Tidak hanya berhenti sampai disana, rupanya batu Ruby memiliki kelebihan lain disamping keindahan kasat mata semata…

Pada masa lalu Batu Ruby diyakini sebagai alternatif sebagai penawar racun, menghindarkan orang dari wabah penyakit, untuk terhindar dari duka, dan beberapa manfaat lain. Bahkan sebagian orang yakin bahwa Batu Ruby dapat dipakai sebagai perantara akan cita-cita yang diinginkan, meramal atau mendapatkan keberuntungan dalam spekulasi bisnis atau mendapatkan cinta seseorang.

Dari komposisi kimianya, Baru Ruby merupakan suatu variasi merah tua aluminium oksida yang jernih dan bersih, dihargai sebagai batu mulia: juga disebut merah delima murni.Yang sangat berharga untuk aluminium oksida yang alami adalah ruby ( dari bahasa Latin yang berarti Rubrum atau, ‘ merah’). warna suatu ruby sangat bervariasi dari yang merah jambu sampai ke suatu merah yang sangat lembayung RUBY mempunyai warna merah terang anggur bebas dari warna coklat atau warna warna ungu atau warna yang kuat atau terang yang mengingatkan kepada warna darah ataubuah kersen atau buah tomat atau merah delima. Warna merah ini terdiri atas alumunium yang tercampur dengan chrominium (Cr); akan tetapi kalau tercampur dengan sedikit Titanium (Ti) warnanya berubah menjadi biru dan namanya safir, jika tercampur dengan zat besi warnanya berubah menjadi kuning yaitu safir kuning.

Batu Ruby yang paling terkenal didunia adalah dari Birma, yang mana sekarang disebut Myanmar. Dimana ruby dari tambang Myanmar adalah lebih tua dari sejarah yaitu jaman batu. Selain Ruby Birma, dikenal pula Ruby madagaskar, dan Ruby Afrika. Akan tetapi kualitas dan keindahan Ruby yang berasal dari Madagaskar dan Afrika masih dibawah Ruby yang berasal dari Birma. Sehingga tidak dapat dipungkiri bahwa harga pasaran untuk Ruby Birma lebih mahal, apalagi Ruby Birma yang memiliki star (ster).

Bagi para pecinta batu, harga batu Ruby untuk pasaran di Jakarta dan martapura sebagai parameter harga, berkisar antara Rp 100.000 sampai puluhan Juta rupiah. Keindahan dan kemewahan batu Ruby tak bisa dipungkiri lagi telah membius banyak kolektor untuk berburu batu ini.

Pemakai batu ruby mempunyai keyakinan batu yang dikenakannya akan memberikan kebahagiaan dan menambah wibawa pada dirinya. “Batu ini tergolong batu yang sangat digemari karena warna merahnya dapat bersinar di tempat gelap dan dapat berpijar jika diterangi sinar ultraviolet.

Friday, 6 May 2011

Emas (Gold = Aurum)


Emas adalah unsur kimia dalam tabel periodik yang memiliki simbol Au (bahasa Latin: 'aurum') dan nomor atom 79. Sebuah logam transisi (trivalen dan univalen) yang lembek, mengkilap, kuning, berat, "malleable", dan "ductile". Emas tidak bereaksi dengan zat kimia lainnya tapi terserang oleh klorin, fluorin dan aqua regia. Logam ini banyak terdapat di nugget emas atau serbuk di bebatuan dan di deposit alluvial dan salah satu logam coinage. Kode ISOnya adalah XAU. Emas melebur dalam bentuk cair pada suhu sekitar 1000 derajat celcius.

Emas merupakan logam yang bersifat lunak dan mudah ditempa, kekerasannya berkisar antara 2,5 – 3 (skala Mohs), serta berat jenisnya tergantung pada jenis dan kandungan logam lain yang berpadu dengannya. Mineral pembawa emas biasanya berasosiasi dengan mineral ikutan (gangue minerals). Mineral ikutan tersebut umumnya kuarsa, karbonat, turmalin, flourpar, dan sejumlah kecil mineral non logam. Mineral pembawa emas juga berasosiasi dengan endapan sulfida yang telah teroksidasi. Mineral pembawa emas terdiri dari emas nativ, elektrum, emas telurida, sejumlah paduan dan senyawa emas dengan unsur-unsur belerang, antimon, dan selenium. Elektrum sebenarnya jenis lain dari emas nativ, hanya kandungan perak di dalamnya >20%.

Emas terbentuk dari proses magmatisme atau pengkonsentrasian di permukaan. Beberapa endapan terbentuk karena proses metasomatisme kontak dan larutan hidrotermal, sedangkan pengkonsentrasian secara mekanis menghasilkan endapan letakan (placer). Genesa emas dikatagorikan menjadi dua yaitu:
  • Endapan primer; dan
  • Endapan plaser.
Manfaat Emas

Emas digunakan sebagai standar keuangan di banyak negara dan juga digunakan sebagai perhiasan, dan elektronik. Penggunaan emas dalam bidang moneter dan keuangan berdasarkan nilai moneter absolut dari emas itu sendiri terhadap berbagai mata uang di seluruh dunia, meskipun secara resmi di bursa komoditas dunia, harga emas dicantumkan dalam mata uang dolar Amerika. Bentuk penggunaan emas dalam bidang moneter lazimnya berupa bulion atau batangan emas dalam berbagai satuan berat gram sampai kilogram.

Emas juga diperdagangkan dalam bentuk koin emas, seperti Krugerrand yang diproduksi oleh South African Mint Company dalam berbagai satuan berat. Satuan berat krugerrand yang umum ditemui adalah 1/10 oz (ounce), 1/4 oz, 1/2 oz dan 1 oz. Harga koin krugerrand didasarkan pada pergerakan harga emas di pasar komoditas dunia yang bergerak terus sepanjang masa perdagangan. Koin Krugerrand khusus (atau biasa disebut proof collector edition) juga diproduksi secara terbatas sesuai dengan tema tertentu. Karena diproduksi terbatas, sering kali harga koin krugerrand edisi proof ini melebihi harga kandungan emas koin tersebut tergantung pada kelangkaan dan kondisi koin khusus ini. Edisi yang cukup digemari dan dicari para investor adalah edisi yang memuat gambar Nelson Mandela.

Terdapat beberapa negara yang memproduksi secara massal koin emas untuk ditawarkan sebagai alternatif investasi, antara lain:
  1. Australia - kangaroo
  2. China - panda
  3. Malaysia - kijang emas
  4. Canada - maple leaf
  5. Inggris - Britannia
  6. Amerika Serikat - eagle dan buffalo
  7. Afrika Selatan - Krugerrand
  8. New Zealand - kiwi
  9. Singapore - lion
  10. Austria - philharmonic

Endapan emas di Indonesia

Potensi endapan emas terdapat di hampir setiap daerah di Indonesia, seperti di Pulau Sumatera, Kepulauan Riau, Pulau Kalimantan, Pulau Jawa, Pulau Sulawesi, Nusa Tenggara, Maluku, dan Papua.

Ekstraksi Emas

Amalgamasi

Amalgamasi adalah proses penyelaputan partikel emas oleh air raksa dan membentuk amalgam (Au – Hg). Amalgam masih merupakan proses ekstraksi emas yang paling sederhana dan murah, akan tetapi proses efektif untuk bijih emas yang berkadar tinggi dan mempunyai ukuran butir kasar (> 74 mikron) dan dalam membentuk emas murni yang bebas (free native gold).
 
Proses amalgamasi merupakan proses kimia fisika, apabila amalgamnya dipanaskan, maka akan terurai menjadi elemen-elemen yaitu air raksa dan bullion emas. Amalgam dapat terurai dengan pemanasan di dalam sebuah retort, air raksanya akan menguap dan dapat diperoleh kembali dari kondensasi uap air raksa tersebut. Sementara Au-Ag tetap tertinggal di dalam retort sebagai logam.

Sianidasi

Proses Sianidasi terdiri dari dua tahap penting, yaitu proses pelarutan dan proses pemisahan emas dari larutannya. Pelarut yang biasa digunakan dalam proses cyanidasi adalah NaCN, KCN, Ca(CN)2, atau campuran ketiganya. Pelarut yang paling sering digunakan adalah NaCN, karena mampu melarutkan emas lebih baik dari pelarut lainnya. Secara umum reaksi pelarutan Au dan Ag adalah sebagai berikut:


4Au + 8CN- + O2 + 2 H2O = 4Au(CN)2- + 4OH-
4Ag + 8CN- + O2 + 2 H2O = 4Ag(CN)2- + 4OH-


Pada tahap kedua yakni pemisahan logam emas dari larutannya dilakukan dengan pengendapan dengan menggunakan serbuk Zn (Zinc precipitation). Reaksi yang terjadi adalah sebagai berikut:


2 Zn + 2 NaAu(CN)2 + 4 NaCN +2 H2O = 2 Au + 2 NaOH + 2 Na2Zn(CN)4 + H2
2 Zn + 2 NaAg(CN)2 + 4 NaCN +2 H2O = 2 Ag + 2 NaOH + 2 Na2Zn(CN)4 + H2


Penggunaan serbuk Zn merupakan salah satu cara yang efektif untuk larutan yang mengandung konsentrasi emas kecil. Serbuk Zn yang ditambahkan kedalam larutan akan mengendapkan logam emas dan perak. Prinsip pengendapan ini mendasarkan deret Clenel, yang disusun berdasarkan perbedaan urutan aktivitas elektro kimia dari logam-logam dalam larutan cyanide, yaitu Mg, Al, Zn, Cu, Au, Ag, Hg, Pb, Fe, Pt. setiap logam yang berada disebelah kiri dari ikatan kompleks sianidanya dapat mengendapkan logam yang digantikannya. 

Jadi sebenarnya tidak hanya Zn yang dapat mendesak Au dan Ag, tetapi Cu maupun Al dapat juga dipakai, tetapi karena harganya lebih mahal maka lebih baik menggunakan Zn. Proses pengambilan emas-perak dari larutan kaya dengan menggunakan serbuk Zn ini disebut “Proses Merill Crowe”.

Bijih Besi


Biji atau bijih besi adalah cebakan yang digunakan untuk membuat besi gubal.
Bijih besi adalah batuan yang mengandung mineral-mineral besi dan sejumlah mineral gangue seperti silika, alumina, magnesia, dan lain-lain. Biji besi terdiri atas oksigen dan atom besi yang berikatan bersama dalam molekul. Besi sendiri biasanya didapatkan dalam bentuk magnetit (Fe3O4), hematit (Fe2O3), goethit, limonit atau siderit. Bijih besi biasanya kaya akan besi oksida dan beragam dalam hal warna, dari kelabu tua, kuning muda, ungu tua, hingga merah karat.

Besi merupakan unsur kuat golongan VIII B yang mempunyai nomor atom 26. Dan besi bisa setiap kali kita lihat di mana-mana dalam kehidupan sehari-hari.

Saat ini, cadangan biji besi nampak banyak, namun seiring dengan bertambahnya penggunaan besi secara eksponensial berkelanjutan, cadangan ini mulai berkurang, karena jumlahnya tetap. Sebagai contoh, Lester Brown dari Worldwatch Institute telah memperkirakan bahwa bijih besi bisa habis dalam waktu 64 tahun berdasarkan pada ekstrapolasi konservatif dari 2% pertumbuhan per tahun.

Besi diperoleh dengan mengolah biji besi menjadi besi kasar. Biji besi diperoleh dari alam dalam bentuk oksida besi. Pengolahan biji besi dilakukan untuk mengurangi oksigen, sehingga disebut proses reduksi. Biji besi yang ditemukan di alam mempunyai berbagai bentuk.

Bentuk Biji Besi

1. Berbentuk batu :


  • Batu besi merah ( Fe2O3), disebut hematit, mengandung kadar besi 45% - 65%, sedikit phosphor dan berwarna merah.
  • Batu besi magnit (Fe3O4), mengandung kadar besi 40% - 70%. Kandungan Phosphor hampir tidak ada, warna hijau tua kehitaman dan bersifat magnet, mengandung pasir besi titan (TiO2) 95 - 11%.
  • Batu besi sawo matang (Fe2O3.3H2O) mengandung kadar besi 25% - 50%, mengandung phosphor dan air.
2. Berbentuk pasir :
Pasir besi titan (TiO2) yang mengandung oksida besi Fe33O4 kira-kira 70% dan bercampur dengan oksida titan (Ti2O2) 9% - 10%.
3. Berbentuk butiran halus campur tanah liat :
Pasir besi spat (Fe.CO3) atau disebut (sperosiderit) dengan kandungan besi 40% bercampur dengan tanah liat. Pasir besi spat ini mengandung karbon 10% - 25%.
Pengolahan Biji Besi

Biji besi umumnya disertai batu pengering yang terdiri dari silikat atau aluminat. Batu pengiring (kotoran) perlu dipisahkan dengan dicuci pada saluran goyang kemudian dihaluskan dengan proses pemecah secara bertingkat. Pemecahan diawali dengan proses ”breaking” menggunakan hammer mill yang mampu mereduksi dimensi bijih besi dari 300 – 1500mm menjadi 100 – 200mm, dilanjutkan dengan proses ”crushing” menggunakan gyratori mill yang mampu mereduksi dimensi bijih besi hingga 10mm dan terakhir proses ”grinding” menggunakan ball mill yang menghasilkan butiran bijih besi berukuran 0,005 – 0,15mm.

Butiran halus bijih besi kemudian dilewatkan pada roda magnetik untuk memisahkan bijih besi yang mengandung kadar Fe tinggi dengan yang berkadar Fe rendah. Bijih besi yang mengandung kadar Fe tinggi kemudian disinter untuk mengurangi kadar air, karbon dan zat asam lainnya. Serbuk dicampur dengan serbuk arang kayu atau serbuk kokas, dibakar dalam dapur berputar. Disini terjadi reduksi tidak sempurna, biji besi setengah meleleh. Akibat dapur berputar akan terbentuk gumpalan berukuran kira-kira 30 – 60mm yang disebut sinter.

Bahan-Bahan Yang Diperlukan Pada Proses Pengolahan Biji Besi

1. Biji besi yang telah diselesaikan (dipecah, dibuat sinter, briket).
2. Bahan bakar
 
a. Arang kayu

Keuntungan : tidak mengandung P dan S
Kerugian : panas pembakarannya rendah 300 k.cal/Kg, tidak keras, tidak berpori-pori, maka hanya untuk dapur tinggi 17 M.
b. Kokas
 
Kokas diperoleh dengan membakar tidak sempurna dari batu bara. Kokas yang baik harus dipilih yang keras, besar dan berpori-pori.
Keuntungan : jumlahnya banyak, mudah panas pembakaran tinggi 8000 kcal/kg.
3. Batu tambahan 
Gunanya untuk mengambil P dan S dari besi dan menghindarkan oksidasi. Umumnya digunakan CaO atau CaCO3. Dalam dapur tinggi batu akan mencair dan menjadi terak. Berat jenis terak < berat jenis besi cair, sehingga butiran-butiran besi terbungkus oleh terak dan terapung di atas cairan besi. Dengan demikian cairan besi dapat dihindarkan dari oksidasi. Lain daripada itu, semua kotoran dapat diserap oleh terak, sehingga besi cair bersih.
4. Udara 
Untuk mengadakan pembakaran dan pembentukan CO sebagai bahan reduksi biji besi diperlukan udara yang banyak sekali. Oksigen yang murah terdapat dalam udara. Untuk kapasitas 300 ton besi kasar diperlukan kira-kira 300 ton kokas, 800 ton biji besi, 106 M3 udara. Agar bahan bakarnya dapat lebih hemat, udara tersebut dipanaskan sampai 900oC dalam pemanas Cowper. Dengan cara ini dapat dihemat bahan bakar 20%.

Tambang Bijih Besi Di Indonesia

Di Indonesia terdapat beberapa daerah penambangan bijih besi, seperti di:
1. Cilacap (khusus pasir besi), Jawa Tengah
2. Cilegon, Banten
3. Gunung Tegak, Lampung
4. Lengabana, Longkana, Pengunungan Verbeek, Sulawesi Tengah
5. Pulau Demawan, Pulau Sebuku, dan Pulau Suwung, Kalimantan Selatan.

Bijih besih juga terdapat di Provinsi Bengkulu, Sulawesi Utara, dan Sulawesi Selatan. Pengolahan bijih besi juga dilakukan oleh PT Krakatau Steel di Cilegon, Banten. Bandar Norlisk, Russia adalah pusat pelombongan atau penggalian bijih besi terbesar di dunia. Bandar yang didiami puluhan ribu buruh ini hanya menggali bijih besi saja.

Wednesday, 4 May 2011

Tembaga (Cuprum = Cu)


Tembaga adalah unsur kimia yang diberi lambang Cu (Latin: cuprum). Logam ini merupakan penghantar listrik dan panas yang baik. Tembaga (Cu) mempunyai sistim kristal kubik. Secara fisik tembga berwarna kuning dan apabila dilihat dengan menggunakan mikroskop bijih akan berwarna pink kecoklatan sampai keabuan.

Unsur tembaga terdapat pada hampir 250 mineral, tetapi hanya sedikit saja yang komersial. Pada endapan sulfida primer, kalkopirit (CuFeS2) adalah yang terbesar, diikuti oleh kalkosit (Cu2S), bornit (Cu5FeS4), kovelit (CuS), dan enargit (Cu3AsS4). Mineral tembaga utama dalam bentuk deposit oksida adalah krisokola (CuSiO3.2HO), malasit (Cu2(OH)2CO3), dan azurit (Cu3(OH)2(CO3)2).
 
Deposit tembaga dapat diklasifikasikan dalam lima tipe, yaitu: deposit porfiri, urat, dan replacement, deposit stratabound dalam batuan sedimen, deposit masif pada batuan volkanik, deposit tembaga nikel dalam intrusi/mafik, serta deposit nativ. Umumnya bijih tembaga di Indonesia terbentuk secara magmatik. Pembentukan endapan magmatik dapat berupa proses hidrotermal atau metasomatisme.
Menurut data tahun 2005, Chili merupakan penghasil tembaga terbesar di dunia, disusul oleh AS dan Indonesia. Tembaga dapat ditambang dengan metode tambang terbuka dan tambang bawah tanah. Selain sebagai penghasil no.1, tambang tembaga terbesar juga dipunyai Chili. Tambang itu terdapat di Chuquicamata, terletak sekitar 1.240 km sebelah utara ibukota Santiago.

Sedang tambang tembaga terbesar di Indonesia adalah yang diusahakan PT Freeport Indonesia di area Grasberg, Papua. Freeport juga mengoperasikan beberapa tambang bawah tanah besar, meski dengan kemampuan produksi yang masih berada di bawah Grasberg. 

Saat ini Grasberg ditambang dengan metode tambang terbuka. Namun karena bukaan yang semakin dalam, sekitar tahun 2015, cara penambangan akan diubah menjadi tambang bawah tanah. Jika semua terwujud, tambang bawah tanah Grasberg akan menjadi salah satu yang terbesar.

Potensi tembaga selain yang terdapat di Papua, juga tersebar di Jawa Barat, Sulawesi Utara, dan Sulawesi Selatan.Penggunaan tembaga dapat dilacak sampai 10,000 tahun yang lalu. Sebelum tembaga, diperkirakan hanya besi dan emas, logam yang terlebih dahulu digunakan manusia.

Kandungan tembaga dinyatakan dalam % (persen). Jadi jika satu tambang  berkadar 2,3%, berarti dari 100 kg bijih akan dihasilkan 2,3 kg tembaga.

Logam tembaga digunakan secara luas dalam industri peralatan listrik, koin, alat rumah tangga, hingga komponen biomedik. Tembaga juga dapat dipadu dengan logam lain hingga terbentuk logam paduan seperti perunggu atau monel. Kawat tembaga dan paduan tembaga digunakan dalam pembuatan motor listrik, generator, kabel transmisi, instalasi listrik rumah dan industri, kendaraan bermotor, konduktor listrik, kabel dan tabung coaxial, tabung microwave, sakelar, reaktifier transsistor, bidang telekomunikasi, dan bidang-bidang yang membutuhkan sifat konduktivitas listrik dan panas yang tinggi, seperti untuk pembuatan tabung-tabung dan klep di pabrik penyulingan. 

Meskipun aluminium dapat digunakan untuk tegangan tinggi pada jaringan transmisi, tetapi tembaga masih memegang peranan penting untuk jaringan bawah tanah dan menguasai pasar kawat berukuran kecil, peralatan industri yang berhubungan dengan larutan, industri konstruksi, pesawat terbang dan kapal laut, atap, pipa ledeng, campuran kuningan dengan perunggu, dekorasi rumah, mesin industri non?elektris, peralatan mesin, pengatur temperatur ruangan, mesin?mesin pertanian. 

Namun mesti pula berhati-hati akan sifat racun logam ini. Ini dapat terjadi ketika tembaga menumpuk dalam tubuh akibat penggunaan alat masak tembaga. Unsur Cu yang berlebih dapat merusak hati dan memacu sirosis.

Beberapa fakta mengenai tembaga:
  • Rata-rata rumah modern dewasa ini mengandung kurang lebih 200 kg tembaga yang digunakan untuk bahan baku kabel listrik, pipa air, dan alat-alat rumah tangga.
  • Sebuah mobil rata-rata mengandung 25 kg tembaga.
  • Tembaga merupakan penghantar listrik dan panas terbaik setelah perak.
  • Patung Liberty mengandung sekitar 90 ribu kg tembaga. Setelah lebih dari 100 tahun, patung Liberty masih tetap menampakkan keindahannya.
  • Kuningan merupakan logam campuran antara tembaga dengan seng, sedang perunggu merupakan campuran tembaga dengan timah. Kuningan dan perunggu lebih kuat dibanding tembaga murni serta lebih tahan korosi.
  • Tembaga adalah logam yang mudah didaur ulang. Di Amerika, setengah dari konsumsi tembaga tahunan dipasok dari hasil daur ulang.

Tuesday, 26 April 2011

Mangan

Mangan adalah unsur kimia dalam tabel periodik yang memiliki lambang Mn dan nomor atom 25.

Sejarah

Pertama kali dikenali oleh Scheele, Bergman dan ahli lainnya sebagai unsur dan diisolasi oleh Gahn pada tahun 1774, dengan  mereduksi mangan dioksida dengan karbon.

Sumber

Mangan termasuk unsur terbesar yang terkandung dalam kerak bumi. Bijih mangan utama adalah pirolusit dan psilomelan, yang mempunyai komposisi oksida dan terbentuk dalam cebakan sedimenter dan residu. Mangan mempunyai warna abu-abu besi dengan kilap metalik sampai submetalik, kekerasan 2 – 6, berat jenis 4,8, massif, reniform, botriodal, stalaktit, serta kadang-kadang berstruktur fibrous dan radial. Mineral mangan tersebar secara luas dalam banyak bentuk; oksida, silikat, karbonat adalah senyawa yang paling umum. Penemuan sejumlah besar senyawa mangan di dasar lautan merupakan sumber mangan dengan kandungan 24%, bersamaan dengan unsur lainnya dengan kandungan yang lebih sedikit.

Kebanyakan senyawa mangan saat ini ditemukan di Rusia, Brazil, Australia, Afrika sSelatan, Gabon, dan India. Irolusi dan rhodokhrosit adalah mineral mangan yang paling banyak dijumpai. Logam ,mangan diperoleh dengan mereduksi oksida mangan dengan natrium, magnesium, aluminum atau dengan proses elektrolisis.

Sifat-sifat

Mangan berwarna putih keabu-abuan, dengan sifat yang keras tapi rapuh. Mangan sangat reaktif secara kimiawi, dan terurai dengan air dingin perlahan-lahan. Mangan digunakan untuk membentuk banyak alloy yang penting. Dalam baja, mangan meningkatkan kualitas tempaan baik dari segi kekuatan, kekerasan,dan  kemampuan pengerasan.

Dengan aluminum dan bismut, khususnya dengan sejumlah kecil tembaga, membentuk alloy yang bersifat ferromagnetik.

Logam mangan bersifat ferromagnetik setelah diberi perlakuan. Logam murninya terdapat sebagai bentuk allotropik dengan empat jenis. Salah satunya,  jenis alfa, stabil pada suhu luar biasa tinggi; sedangkan mangan jenis  gamma, yang berubah menjadi alfa pada suhu tinggi, dikatakan fleksibel, mudah dipotong dan ditempa.

Kegunaan

Mangan dioksida (sebagai pirolusit) digunakan sebagai depolariser dan sel kering baterai dan untuk menghilangkan warna hijau pada gelas yang disebabkan oleh pengotor besi. Mangan sendiri memberi warna lembayung pada kaca. Dioksidanya berguna untuk pembuatan oksigen dan khlorin, dan dalam pengeringan cat hitam. Senyawa permanganat adalah oksidator yang kuat dan digunakan dalam analisis kuantitatif dan dalam pengobatan.

Mangan juga banyak tersebar dalam tubuh. Mangan merupakan unsur yang penting untuk penggunaan vitamin B1.

Mangan berkomposisi oksida lainnya namun berperan bukan sebagai mineral utama dalam cebakan bijih adalah bauxit, manganit, hausmanit, dan lithiofori, sedangkan yang berkomposisi karbonat adalah rhodokrosit, serta rhodonit yang berkomposisi silika.

Cebakan mangan dapat terjadi dalam beberapa tipe, seperti cebakan hidrotermal, cebakan sedimenter, cebakan yang berasosiasi dengan aliran lava bawah laut, cebakan metamorfosa, cebakan laterit dan akumulasi residu.

Sekitar 90% mangan dunia digunakan untuk tujuan metalurgi, yaitu untuk proses produksi besi-baja, sedangkan penggunaan mangan untuk tujuan non-metalurgi antara lain untuk produksi baterai kering, keramik dan gelas, kimia, dan lain-lain.

Potensi cadangan bijih mangan di Indonesia cukup besar, namun terdapat di berbagai lokasi yang tersebar di seluruh Indonesia. Potensi tersebut terdapat di Pulau Sumatera, Kepulauan Riau, Pulau Jawa, Pulau Kalimantan, Pulau Sulawesi, Nusa Tenggara, Maluku, dan Papua.


Penanganan

Terpapar dengan debu mangan, uap dan senyawanya tidak boleh melebihi  angka 5 ppm bahkan untuk periode yang sangat pendek karena tingkat toksisitas unsurnya.

Besi

Besi adalah logam yang berasal dari bijih besi (tambang) yang banyak digunakan untuk kehidupan manusia sehari-hari. Dalam tabel periodik, besi mempunyai simbol Fe dan nomor atom 26. Besi juga mempunyai nilai ekonomis yang tinggi.
Besi adalah logam yang paling banyak dan paling beragam penggunaannya. Hal itu karena beberapa hal, diantaranya:
  • Kelimpahan besi di kulit bumi cukup besar,
  • Pengolahannya relatif mudah dan murah, dan
  • Besi mempunyai sifat-sifat yang menguntungkan dan mudah dimodifikasi
Salah satu kelemahan besi adalah mudah mengalami korosi. Korosi menimbulkan banyak kerugian karena mengurangi umur pakai berbagai barang atau bangunan yang menggunakan besi atau baja. Sebenarnya korosi dapat dicegah dengan mengubah besi menjadi baja tahan karat (stainless steel), akan tetapi proses ini terlalu mahal untuk kebanyakan penggunaan besi.
Korosi besi memerlukan oksigen dan air. Berbagai jenis logam contohnya Zink dan Magnesium dapat melindungi besi dari korosi. Cara-cara pencegahan korosi besi yang akan dibahas berikut ini didasarkan pada dua sifat tersebut.
  1. Pengecatan. Jembatan, pagar, dan railing biasanya dicat. Cat menghindarkan kontak dengan udara dan air. Cat yang mengandung timbel dan zink (seng) akan lebih baik, karena keduanya melindungi besi terhadap korosi.
  2. Pelumuran dengan Oli atau Gemuk. Cara ini diterapkan untuk berbagai perkakas dan mesin. Oli dan gemuk mencegah kontak dengan air.
  3. Pembalutan dengan Plastik. Berbagai macam barang, misalnya rak piring dan keranjang sepeda dibalut dengan plastik. Plastik mencegah kontak dengan udara dan air.
  4. Tin Plating (pelapisan dengan timah). Kaleng-kaleng kemasan terbuat dari besi yang dilapisi dengan timah. Pelapisan dilakukan secara elektrolisis, yang disebut tin plating. Timah tergolong logam yang tahan karat. Akan tetapi, lapisan timah hanya melindungi besi selama lapisan itu utuh (tanpa cacat). Apabila lapisan timah ada yang rusak, misalnya tergores, maka timah justru mendorong/mempercepat korosi besi. Hal itu terjadi karena potensial reduksi besi lebih negatif daripada timah. Oleh karena itu, besi yang dilapisi dengan timah akan membentuk suatu sel elektrokimia dengan besi sebagai anode. Dengan demikian, timah mendorong korosi besi. Akan tetapi hal ini justru yang diharapkan, sehingga kaleng-kaleng bekas cepat hancur.
  5. Galvanisasi (pelapisan dengan Zink). Pipa besi, tiang telepon dan berbagai barang lain dilapisi dengan zink. Berbeda dengan timah, zink dapat melindungi besi dari korosi sekalipun lapisannya tidak utuh. Hal ini terjadi karena suatu mekanisme yang disebut perlindungan katode. Oleh karena potensial reduksi besi lebih positif daripada zink, maka besi yang kontak dengan zink akan membentuk sel elektrokimia dengan besi sebagai katode. Dengan demikian besi terlindungi dan zink yang mengalami oksidasi (berkarat). Badan mobil-mobil baru pada umumnya telah digalvanisasi, sehingga tahan karat.
  6. Cromium Plating (pelapisan dengan kromium). Besi atau baja juga dapat dilapisi dengan kromium untuk memberi lapisan pelindung yang mengkilap, misalnya untuk bumper mobil. Cromium plating juga dilakukan dengan elektrolisis. Sama seperti zink, kromium dapat memberi perlindungan sekalipun lapisan kromium itu ada yang rusak.
  7. Sacrificial Protection (pengorbanan anode). Magnesium adalah logam yang jauh lebih aktif (berarti lebih mudah berkarat) daripada besi. Jika logam magnesium dikontakkan dengan besi, maka magnesium itu akan berkarat tetapi besi tidak. Cara ini digunakan untuk melindungi pipa baja yang ditanam dalam tanah atau badan kapal laut. Secara periodik, batang magnesium harus diganti.


Monday, 25 April 2011

Timah


Timah adalah sebuah unsur kimia dalam tabel periodik yang memiliki simbol Sn (bahasa Latin: stannum) dan nomor atom 50. Unsur ini merupakan logam miskin keperakan, dapat ditempa ("malleable"), tidak mudah teroksidasi dalam udara sehingga tahan karat, ditemukan dalam banyak aloy, dan digunakan untuk melapisi logam lainnya untuk mencegah karat. Timah diperoleh terutama dari mineral cassiterite yang terbentuk sebagai oksida.
 
Timah biasa, terbentuk oleh 9 isotop yang stabil. Ada 18 isotop lainnya yang diketahui. Timah merupakan logam berwarna perak keputih-putihan, dengan kekerasan yang rendah, berat jenis 7,3 g/cm3, serta mempunyai sifat konduktivitas panas dan listrik yang tinggi. Dalam keadaan normal (13 – 1600C), logam ini bersifat mengkilap dan mudah dibentuk, ductile dan memilki struktur kristal yang tinggi. Jika struktur ini dipatahkan, terdengar suara yang sering disebut “tin cry” (tangisan timah) ketika sebatang unsur ini dibengkokkan.

Timah terbentuk sebagai endapan primer pada batuan granit dan pada daerah sentuhan batuan endapan metamorf yang biasanya berasosiasi dengan turmalin dan urat kuarsa timah, serta sebagai endapan sekunder, yang di dalamnya terdiri dari endapan alluvium, elluvial, dan koluvium.

Mineral yang terkandung di dalam bijih timah pada umumnya mineral utama yaitu kasiterit, sedangkan pirit, kuarsa, zircon, ilmenit, plumbum, bismut, arsenik, stibnite, kalkopirit, kuprit, xenotim, dan monasit merupakan mineral ikutan.

Kegunaan timah banyak sekali terutama untuk bahan baku logam pelapis, solder, cendera mata, dan lain-lain.
Potensi Timah di Indonesia terdapat di Pulau Bangka, Pulau Belitung, Pulau Singkep, dan PulauKarimun

Bentuk
 
Unsur ini memiliki 2 bentuk alotropik pada tekanan normal. Jika dipanaskan, timah abu-abu (timah alfa) dengan struktur kubus berubah pada 13.2 derajat Celcius menjadi timah putih (timah beta) yang memiliki struktur tetragonal. Ketika timah didinginkan sampai suhu 13,2 derajat Celcius, ia pelan-pelan berubah dari putih menjadi abu-abu. Perubahan ini disebabkan oleh ketidakmurnian (impurities) seperti aluminium dan seng, dan dapat dicegah dengan menambahkan antimoni atau bismut. Perubahan dari bentuk alfa ke bentuk beta dinamakan “tin pest”. Timah abu-abu memiliki sedikit kegunaan. Timah dapat dipoles sangat licin dan digunakan untuk menyelimuti logam lain untuk mencegah korosi dan aksi kimia. Lapisan tipis timah pada baja digunakan untuk membuat makanan tahan lama. Timah juga digunakan dalam pembuatan grenjeng rokok (timah putih), pada longsongan peluru (timah hitam).

Campuran logam timah sangat penting. Solder lunak, perunggu, logam babbit, logam bel, logam putih, campuran logam bentukan dan perunggu fosfor adalah beberapa campuran logam yang mengandung timah.


Timah dapat menahan air laut yang telah didistilasi dan air keran, tetapi mudah terserang oleh asam yang kuat, alkali dan garam asam. Oksigen dalam suatu solusi dapat mempercepat aksi serangan kimia-kimia tersebut. Jika dipanaskan dalam udara, timah membentuk Sn2, sedikit asam, dan membentuk
stannate salts dengan oksida. Garam yang paling penting adalah klorida, yang digunakan sebagai agen reduksi. Garam timah yang disemprotkan pada gelas digunakan untuk membuat lapisan konduktor listrik. Aplikasi ini telah dipakai untuk kaca mobil yang tahan beku. Kebanyakan kaca jendela sekarang ini dibuat dengan mengapungkan gelas cair di dalam timah cair untuk membentuk permukaan datar (proses Pilkington).

Baru-baru ini, campuran logam kristal timah-niobium menjadi superkonduktor pada suhu sangat rendah, menjadikannya sebagai bahan konstruksi magnet superkonduktif yang menjanjikan. Magnet tersebut, yang terbuat oleh kawat timah-niobium memiliki berat hanya beberapa kilogram tetapi dengan baterai yang kecil dapat memproduksi medan magnet hampir sama dengan kekuatan 100 ton elektromagnet yang dijalankan dengan sumber listrik yang besar.


Penanganan
 
Jumlah timah yang sedikit dalam makanan tidak berbahaya. Limit dalam makanan di Amerika Serikat adalah 300 mg/kg. Senyawa timah triakil dan triaril digunakan sebagai racun biologi (biocides) dan perlu ditangani secara hati-hati

Monday, 4 April 2011

Nikel



Sejarah

Nikel ditemukan oleh Cronstedt, pada tahun 1751, Ia menemukannya dalam  mineral yang disebutnya kupfernickel (nikolit). Nikel adalah unsur kimia metalik dalam tabel periodik yang memiliki simbol Ni dan nomor atom 28.

Nikel merupakan logam yang terbentuk dari proses alam. Nikel mempunyai sifat tahan karat. Dalam keadaan murni, nikel bersifat lembek, tetapi jika dipadukan dengan besi, krom, dan logam lainnya, dapat membentuk baja tahan karat yang keras. Nikel dapat didaur-ulang dan dapat digunakan serta digunakan-kembali tanpa degradasi atau penghilangan zat-zat intrinsiknya.

Perpaduan nikel, krom dan besi menghasilkan baja tahan karat (stainless steel) yang banyak diaplikasikan pada peralatan dapur (sendok, dan peralatan memasak), ornamen-ornamen rumah dan gedung, serta komponen industri.

Nikel biasanya terbentuk bersama-sama dengan kromit dan platina dalam batuan ultrabasa seperti peridotit, baik termetamorfkan maupun tidak. Terdapat dua jenis endapan nikel yang bersifat komersil, yaitu: sebagai hasil konsentrasi residual silika dan pada proses pelapukan batuan beku ultrabasa, serta sebagai endapan nikel-tembaga sulfida, yang biasanya berasosiasi dengan pirit, pirotit, dan kalkopirit. 

Sumber

Nikel adalah komponen yang banyak ditemukan dalam meteorit dan menjadi ciri komponen yang membedakan meteorit dari mineral lainnya. Meteorit besi atau siderit, dapat mengandung alloy besi dan nikel berkadar 5-25%. Nikel diperoleh secara komersial dari pentlandit dan pirotit di kawasan Sudbury Ontario, sebuah daerah yang menghasilkan 30% kebutuhan dunia akan nikel.

Deposit nikel lainnya ditemukan di Kaledonia Baru, Australia, Cuba, Indonesia. Di Indonesia, potensi nikel terdapat di Pulau Sulawesi, Kalimantan bagian tenggara, Maluku, dan Papua.

Sifat-sifat


Nikel berwarna putih keperak-perakan dengan pemolesan tingkat tinggi. Bersifat keras, mudah ditempa, sedikit ferromagnetis, dan merupakan konduktor yang agak baik terhadap panas dan listrik. Nikel tergolong dalam grup logam besi-kobal,  yang dapat menghasilkan alloy yang sangat berharga.

Kegunaan

Keserbagunaan dan kombinasi sifat-sifat yang khas dari nikel, membuatnya ada di mana-mana dalam kehidupan sehari-hari. Selain keras, nikel sekaligus juga dapat ditempa, tahan karat dan tetap mempertahankan ciri mekanis dan fisiknya, walaupun ditempatkan pada suhu yang sangat tinggi.
Nikel digunakan sebagai bahan paduan logam yang banyak digunakan diberbagai industri logam. Nikel digunakan secara besar-besaran untuk pembuatan baja tahan karat dan alloy lain yang bersifat tahan korosif. Alloy tembaga-nikel yang berbentuk tabung banyak digunakan untuk pembuatan instalasi proses penghilangan garam yang digunakan untuk mengubah air laut menjadi air segar.

Nikel, juga digunakan untuk membuat uang koin,dan baja nikel untuk melapisi senjata dan ruangan besi (deposit di bank), dan nikel yang sangat halus, digunakan sebagai katalis untuk menghidrogenasi minyak sayur (menjadikannya padat). Nikel juga digunakan dalam keramik, pembuatan magnet Alnico dan baterai penyimpanan.

Isotop.

Nikel sulfat dan nikel oksida adalah senyawa yang penting. Nikel alam adalah camuran dari lima isotop stabil, ada pula sembilan isotop lainnya yang tidak stabil.

Penanganan

Terpapar dengan logam nikel dan senyawa nikel yang mudah larut tidak boleh melebih 0.05 mg/cm3 (selama 8 jam kerja perhari- 40 jam seminggu). Uap dan debu nikel sulfida beresiko karsinogenik.  

Nikel Laterit 

Batuan induk bijih nikel adalah batuan peridotit. Menurut Vinogradov, batuan ultra basa, rata-rata mempunyai kandungan nikel sebesar 0,2 %. Unsur nikel tersebut terdapat dalam kisi-kisi kristal mineral olivin dan piroksin, sebagai hasil substitusi terhadap atom Fe dan Mg. 

Proses terjadinya substitusi antara Ni, Fe dan Mg dapat diterangkan, karena radius ion dan muatan ion yang hampir bersamaan di antara unsur-unsur tersebut. Proses serpentinisasi yang terjadi pada batuan peridotit akibat pengaruh larutan hydrothermal, akan merubah batuan peridotit menjadi batuan serpentinit atau batuan serpentinit peroditit,  

Sedangkan proses kimia dan fisika dari udara, air serta pergantian panas dingin yang bekerja kontinyu, menyebabkan disintegrasi dan dekomposisi pada batuan induk. 

Pada pelapukan kimia khususnya, air tanah yang kaya akan CO2 yang berasal dari udara dan pembusukan tumbuh-tumbuhan, menguraikan mineral-mineral yang tidak stabil (olivin dan piroksin) pada batuan ultra basa, menghasilkan Mg, Fe, Ni yang larut; Si cenderung membentuk koloid dari partikel-partikel silika yang sangat halus. Didalam larutan, Fe teroksidasi dan mengendap sebagai ferri-hydroksida, akhirnya membentuk mineral-mineral seperti geothit, limonit, dan haematit dekat permukaan. Bersama mineral-mineral ini selalu ikut serta unsur cobalt dalam jumlah kecil. 
 
Larutan yang mengandung Mg, Ni, dan Si terus menerus ke bawah selama larutannya bersifat asam, hingga pada suatu kondisi dimana suasana cukup netral akibat adanya kontak dengan tanah dan batuan, maka ada kecenderungan untuk membentuk endapan hydrosilikat. Nikel yang terkandung dalam rantai silikat atau hydrosilikat dengan komposisi yang mungkin bervariasi tersebut akan mengendap pada celah-celah atau rekahan-rekahan yang dikenal dengan urat-urat garnierit dan krisopras. 

Sedangkan larutan residunya akan membentuk suatu senyawa yang disebut saprolit yang berwarna coklat kuning kemerahan. Unsur-unsur lainnya, seperti Ca dan Mg yang terlarut sebagai bikarbonat, akan terbawa ke bawah sampai batas pelapukan dan akan diendapkan sebagai dolomit, magnesit yang biasa mengisi celah-celah atau rekahan-rekahan pada batuan induk. Di lapangan urat-urat ini dikenal sebagai batas petunjuk antara zona pelapukan dengan zona batuan segar yang disebut dengan akar pelapukan (root of weathering)

Proses Pengolahan

Proses pengolahan dilakukan untuk menghasilkan nikel matte yaitu produk dengan kadar nikel di atas 75 persen. 

Tahap-tahap utama dalam proses pengolahan adalah sebagai berikut:

Pengeringan di Tanur Pengering

Bertujuan untuk menurunkan kadar air bijih laterit yang dipasok dari bagian Tambang dan memisahkan bijih yang berukuran +25 mm dan – 25 mm.

Kalsinasi dan Reduksi di Tanur Pereduksi

bertujuan untuk menghilangkan kandungan air di dalam bijih, mereduksi sebagian nikel oksida menjadi nikel logam, dan sulfidasi.

Peleburan di Tanur Listrik

Bertujuan untuk melebur kalsin hasil kalsinasi/reduksi, sehingga terbentuk fasa lelehan matte dan terak.

Pengkayaan di Tanur Pemurni

Bertujuan untuk menaikkan kadar Ni di dalam matte dari sekitar 27 persen menjadi di atas
75 persen.

Granulasi dan Pengemasan

Bertujuan untuk mengubah bentuk matte dari logam cair menjadi butiran-butiran yang siap diekspor setelah dikeringkan dan dikemas.